Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 30, 2026
- 
            The metabolic activity of microbial communities is essential for host and environmental health, influencing processes from immune regulation to bioremediation. Given this importance, the rational design of microbiomes with targeted functional properties is an important objective. Designing microbial consortia with targeted functions is challenging due to complex community interactions and environmental heterogeneity. Community-function landscapes address this challenge by statistically inferring impacts of species presence or absence on function. Similar to fitness landscapes, community-function landscapes are shaped by both additive effects and interactions (epistasis) among species that influence function. Here, we apply the community-function landscape approach to design synthetic microbial consortia to degrade the toxic environmental contaminant bisphenol-A (BPA). Using synthetic communities of BPA-degrading isolates, we map community-function landscapes across increasing BPA concentrations, where higher BPA means greater toxicity. As toxicity increases, so does epistasis, indicating that collective effects become more important in degradation. Further, we leverage landscapes to rationally design communities with predictable BPA degradation dynamics in vitro. Remarkably, designed synthetic communities are able to remediate BPA in contaminated soils. Our results demonstrate that toxicity can drive epistatic interactions in community-function landscapes and that these landscapes can guide microbial consortia design for bioremediation.more » « lessFree, publicly-accessible full text available March 28, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available